Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inducing musical-interval learning by combining task practice with periods of stimulus exposure alone.

Identifieur interne : 000538 ( Main/Exploration ); précédent : 000537; suivant : 000539

Inducing musical-interval learning by combining task practice with periods of stimulus exposure alone.

Auteurs : David F. Little [États-Unis] ; Henry H. Cheng [États-Unis] ; Beverly A. Wright [États-Unis]

Source :

RBID : pubmed:30136042

Descripteurs français

English descriptors

Abstract

A key component of musical proficiency is the ability to discriminate between and identify musical intervals, or fixed ratios between pitches. Acquiring these skills requires training, but little is known about how to best arrange the trials within a training session. To address this issue, learning on a musical-interval comparison task was evaluated for two four-day training regimens that employed equal numbers of stimulus presentations per day. A regimen of continuous practice yielded no learning, but a regimen that combined practice and stimulus exposure alone generated clear improvement. Learning in the practice-plus-exposure regimen was due to the combination of the two experiences, because two control groups who received only either the practice or the exposure from that regimen did not learn. Posttest performance suggested that this improvement in comparison learning generalized to an untrained stimulus type and an untrained musical-interval identification task. Naïve comparison performance, but not learning, was better for larger pitch-ratio differences and for individuals with more musical experience. The reported benefits of the practice-plus-exposure regimen mirror the outcomes for fine-grained discrimination and speech tasks, suggesting that a general learning principle is involved. In practical terms, it appears that combining practice and stimulus exposure alone is a particularly effective configuration for improving musical-interval perception.

DOI: 10.3758/s13414-018-1584-x
PubMed: 30136042
PubMed Central: PMC6384134


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inducing musical-interval learning by combining task practice with periods of stimulus exposure alone.</title>
<author>
<name sortKey="Little, David F" sort="Little, David F" uniqKey="Little D" first="David F" last="Little">David F. Little</name>
<affiliation wicri:level="2">
<nlm:affiliation>Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA. david.frank.little@gmail.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Henry H" sort="Cheng, Henry H" uniqKey="Cheng H" first="Henry H" last="Cheng">Henry H. Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208-3550, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208-3550</wicri:regionArea>
<wicri:noRegion>60208-3550</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wright, Beverly A" sort="Wright, Beverly A" uniqKey="Wright B" first="Beverly A" last="Wright">Beverly A. Wright</name>
<affiliation wicri:level="1">
<nlm:affiliation>Communication Sciences and Disorders, Knowles Hearing Center, Northwestern Institute for Neuroscience, Northwestern University, Evanston, IL, 60208-3550, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Communication Sciences and Disorders, Knowles Hearing Center, Northwestern Institute for Neuroscience, Northwestern University, Evanston, IL, 60208-3550</wicri:regionArea>
<wicri:noRegion>60208-3550</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30136042</idno>
<idno type="pmid">30136042</idno>
<idno type="doi">10.3758/s13414-018-1584-x</idno>
<idno type="pmc">PMC6384134</idno>
<idno type="wicri:Area/Main/Corpus">000716</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000716</idno>
<idno type="wicri:Area/Main/Curation">000716</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000716</idno>
<idno type="wicri:Area/Main/Exploration">000716</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inducing musical-interval learning by combining task practice with periods of stimulus exposure alone.</title>
<author>
<name sortKey="Little, David F" sort="Little, David F" uniqKey="Little D" first="David F" last="Little">David F. Little</name>
<affiliation wicri:level="2">
<nlm:affiliation>Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA. david.frank.little@gmail.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Henry H" sort="Cheng, Henry H" uniqKey="Cheng H" first="Henry H" last="Cheng">Henry H. Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208-3550, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208-3550</wicri:regionArea>
<wicri:noRegion>60208-3550</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wright, Beverly A" sort="Wright, Beverly A" uniqKey="Wright B" first="Beverly A" last="Wright">Beverly A. Wright</name>
<affiliation wicri:level="1">
<nlm:affiliation>Communication Sciences and Disorders, Knowles Hearing Center, Northwestern Institute for Neuroscience, Northwestern University, Evanston, IL, 60208-3550, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Communication Sciences and Disorders, Knowles Hearing Center, Northwestern Institute for Neuroscience, Northwestern University, Evanston, IL, 60208-3550</wicri:regionArea>
<wicri:noRegion>60208-3550</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Attention, perception & psychophysics</title>
<idno type="eISSN">1943-393X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic Stimulation (methods)</term>
<term>Acoustic Stimulation (psychology)</term>
<term>Adolescent (MeSH)</term>
<term>Adult (MeSH)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Learning (physiology)</term>
<term>Male (MeSH)</term>
<term>Music (psychology)</term>
<term>Psychomotor Performance (physiology)</term>
<term>Random Allocation (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adolescent (MeSH)</term>
<term>Adulte (MeSH)</term>
<term>Apprentissage (physiologie)</term>
<term>Facteurs temps (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Jeune adulte (MeSH)</term>
<term>Musique (psychologie)</term>
<term>Mâle (MeSH)</term>
<term>Performance psychomotrice (physiologie)</term>
<term>Répartition aléatoire (MeSH)</term>
<term>Stimulation acoustique (méthodes)</term>
<term>Stimulation acoustique (psychologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Acoustic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Stimulation acoustique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Apprentissage</term>
<term>Performance psychomotrice</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Learning</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" qualifier="psychologie" xml:lang="fr">
<term>Musique</term>
<term>Stimulation acoustique</term>
</keywords>
<keywords scheme="MESH" qualifier="psychology" xml:lang="en">
<term>Acoustic Stimulation</term>
<term>Music</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Random Allocation</term>
<term>Time Factors</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adolescent</term>
<term>Adulte</term>
<term>Facteurs temps</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Mâle</term>
<term>Répartition aléatoire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A key component of musical proficiency is the ability to discriminate between and identify musical intervals, or fixed ratios between pitches. Acquiring these skills requires training, but little is known about how to best arrange the trials within a training session. To address this issue, learning on a musical-interval comparison task was evaluated for two four-day training regimens that employed equal numbers of stimulus presentations per day. A regimen of continuous practice yielded no learning, but a regimen that combined practice and stimulus exposure alone generated clear improvement. Learning in the practice-plus-exposure regimen was due to the combination of the two experiences, because two control groups who received only either the practice or the exposure from that regimen did not learn. Posttest performance suggested that this improvement in comparison learning generalized to an untrained stimulus type and an untrained musical-interval identification task. Naïve comparison performance, but not learning, was better for larger pitch-ratio differences and for individuals with more musical experience. The reported benefits of the practice-plus-exposure regimen mirror the outcomes for fine-grained discrimination and speech tasks, suggesting that a general learning principle is involved. In practical terms, it appears that combining practice and stimulus exposure alone is a particularly effective configuration for improving musical-interval perception.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">30136042</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1943-393X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>81</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Attention, perception & psychophysics</Title>
<ISOAbbreviation>Atten Percept Psychophys</ISOAbbreviation>
</Journal>
<ArticleTitle>Inducing musical-interval learning by combining task practice with periods of stimulus exposure alone.</ArticleTitle>
<Pagination>
<MedlinePgn>344-357</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3758/s13414-018-1584-x</ELocationID>
<Abstract>
<AbstractText>A key component of musical proficiency is the ability to discriminate between and identify musical intervals, or fixed ratios between pitches. Acquiring these skills requires training, but little is known about how to best arrange the trials within a training session. To address this issue, learning on a musical-interval comparison task was evaluated for two four-day training regimens that employed equal numbers of stimulus presentations per day. A regimen of continuous practice yielded no learning, but a regimen that combined practice and stimulus exposure alone generated clear improvement. Learning in the practice-plus-exposure regimen was due to the combination of the two experiences, because two control groups who received only either the practice or the exposure from that regimen did not learn. Posttest performance suggested that this improvement in comparison learning generalized to an untrained stimulus type and an untrained musical-interval identification task. Naïve comparison performance, but not learning, was better for larger pitch-ratio differences and for individuals with more musical experience. The reported benefits of the practice-plus-exposure regimen mirror the outcomes for fine-grained discrimination and speech tasks, suggesting that a general learning principle is involved. In practical terms, it appears that combining practice and stimulus exposure alone is a particularly effective configuration for improving musical-interval perception.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Little</LastName>
<ForeName>David F</ForeName>
<Initials>DF</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-5737-7082</Identifier>
<AffiliationInfo>
<Affiliation>Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA. david.frank.little@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Henry H</ForeName>
<Initials>HH</Initials>
<AffiliationInfo>
<Affiliation>Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208-3550, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wright</LastName>
<ForeName>Beverly A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Communication Sciences and Disorders, Knowles Hearing Center, Northwestern Institute for Neuroscience, Northwestern University, Evanston, IL, 60208-3550, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DC004453</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01DC004453</GrantID>
<Agency>National Institute on Deafness and Other Communication Disorders</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>52006934</GrantID>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Atten Percept Psychophys</MedlineTA>
<NlmUniqueID>101495384</NlmUniqueID>
<ISSNLinking>1943-3921</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Atten Percept Psychophys. 2019 Feb 21;:</RefSource>
<PMID Version="1">30790142</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000161" MajorTopicYN="N">Acoustic Stimulation</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
<QualifierName UI="Q000523" MajorTopicYN="Y">psychology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007858" MajorTopicYN="N">Learning</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="N">Music</DescriptorName>
<QualifierName UI="Q000523" MajorTopicYN="Y">psychology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011597" MajorTopicYN="N">Psychomotor Performance</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011897" MajorTopicYN="N">Random Allocation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Music cognition</Keyword>
<Keyword MajorTopicYN="N">Perceptual learning</Keyword>
<Keyword MajorTopicYN="N">Psychoacoustics</Keyword>
<Keyword MajorTopicYN="N">Sound recognition</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30136042</ArticleId>
<ArticleId IdType="doi">10.3758/s13414-018-1584-x</ArticleId>
<ArticleId IdType="pii">10.3758/s13414-018-1584-x</ArticleId>
<ArticleId IdType="pmc">PMC6384134</ArticleId>
<ArticleId IdType="mid">NIHMS1504495</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2004 Feb 17;14(4):322-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2004 Oct;8(10):457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Psychol. 2005;56:149-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15709932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Lang. 2005 Jul;94(1):72-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15896385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2005 Jul;9(7):329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14895-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16203984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychon Bull Rev. 2005 Dec;12(6):1068-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16615330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 2007 Apr;17(2):148-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17317151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2007 Jul;180(4):727-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17333009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2007 Jun 7;54(5):677-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17553419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis. 2008 Jan 11;8(1):5.1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18318608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2009 Feb 12;364(1515):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18977731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vision Res. 2009 Oct;49(21):2591-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19616572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vision Res. 2009 Oct;49(21):2611-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19665036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2010 Jan 20;165(2):436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19883735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2010 Sep 22;30(38):12868-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2010 Oct;128(4):1943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20968366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cogn Sci. 2005 Jul 8;29(4):559-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21702785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vision Res. 2014 Aug;101:118-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24959653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 24;10(3):e0121953</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25803429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2015 Aug;138(2):928-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26328708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2016 Aug;140(2):1332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27586759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Psychol Hum Percept Perform. 1982 Apr;8(2):297-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6461723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Percept Psychophys. 1984 Aug;36(2):131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6514522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 1978 Feb;63(2):456-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">670543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 1994 Nov;96(5 Pt 1):2704-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7983276</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Little, David F" sort="Little, David F" uniqKey="Little D" first="David F" last="Little">David F. Little</name>
</region>
<name sortKey="Cheng, Henry H" sort="Cheng, Henry H" uniqKey="Cheng H" first="Henry H" last="Cheng">Henry H. Cheng</name>
<name sortKey="Wright, Beverly A" sort="Wright, Beverly A" uniqKey="Wright B" first="Beverly A" last="Wright">Beverly A. Wright</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000538 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000538 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30136042
   |texte=   Inducing musical-interval learning by combining task practice with periods of stimulus exposure alone.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30136042" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021